Kinetic Theory for Neuronal Network Dynamics∗

نویسندگان

  • DAVID CAI
  • DAVID W. MCLAUGHLIN
چکیده

We present a detailed theoretical framework for statistical descriptions of neuronal networks and derive (1+1)-dimensional kinetic equations, without introducing any new parameters, directly from conductance-based integrate-and-fire neuronal networks. We describe the details of derivation of our kinetic equation, proceeding from the simplest case of one excitatory neuron, to coupled networks of purely excitatory neurons, to coupled networks consisting of both excitatory and inhibitory neurons. The dimension reduction in our theory is achieved via novel moment closures. We also describe the limiting forms of our kinetic theory in various limits, such as the limit of mean-driven dynamics and the limit of infinitely fast conductances. We establish accuracy of our kinetic theory by comparing its prediction with the full simulations of the original point-neuron networks. We emphasize that our kinetic theory is dynamically accurate, i.e., it captures very well the instantaneous statistical properties of neuronal networks under time-inhomogeneous inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum-entropy closures for kinetic theories of neuronal network dynamics.

We analyze (1 + 1)D kinetic equations for neuronal network dynamics, which are derived via an intuitive closure from a Boltzmann-like equation governing the evolution of a one-particle (i.e., one-neuron) probability density function. We demonstrate that this intuitive closure is a generalization of moment closures based on the maximum-entropy principle. By invoking maximum-entropy closures, we ...

متن کامل

Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear bou...

متن کامل

An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex.

A coarse-grained representation of neuronal network dynamics is developed in terms of kinetic equations, which are derived by a moment closure, directly from the original large-scale integrate-and-fire (I&F) network. This powerful kinetic theory captures the full dynamic range of neuronal networks, from the mean-driven limit (a limit such as the number of neurons N --> infinity, in which the fl...

متن کامل

Simulation of nanodroplet impact on a solid surface

A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...

متن کامل

A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics

To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006